

Challenge: When a car turns to the left, why do passengers slide to the right?

How can circular motion be accelerated when speed is constant?

Four variables are involved in circular motion:

1. \qquad 2. \qquad 3.
2. \qquad 5. \qquad
r α \qquad
In words: Radius is \qquad proportional to \qquad
$F_{c} \alpha$ \qquad
In words: Centripetal force is \qquad proportional to \qquad
$m \alpha$ \qquad
In words: Mass is \qquad proportional to \qquad

$$
F_{c}=\square \quad a_{c}=\square
$$

Problem Set \#1 (1-2) (on back)
\qquad furnishes most of the F_{c} to make cars turn in a curve. Banking a curve adds to the F_{c} due to the \qquad component of the
\qquad force exerted by the road on the car.

Use the ones method to solve: If speed limit around a curve is \qquad mph , and your velocity is 60 mph , the radius of the circle will be \qquad times greater.

