Note Taking Guide - Episode 504

Centripetal Force:

Challenge: When a car turns to the left, why do passengers slide to the right?

How can circular motion be accelerated when speed is constant?

Four variables are involved in circular motion:

- 1. ____ 2. ___ 3. ___ 4. ___ 5. ___

rα_____

In words: Radius is _____ proportional to _____

F_c α _____

In words: Centripetal force is _____ proportional to _____

 $\mathbf{m} \alpha$

In words: Mass is _____ proportional to _____

 $F_c = ---- a_c = --$

Problem Set #1 (1-2) (on back)

furnishes most of the F_c to make cars turn in a curve. Banking a curve adds to the F_c due to the _____ component of the _____ force exerted by the road on the car.

Use the ones method to solve: If speed limit around a curve is _____ mph, and your velocity is 60 mph, the radius of the circle will be _____ times greater.