\qquad

1. The formula for calculating torque is $T=$ \qquad . What is the unit?
\qquad
2. The direction for a torque is always either \qquad or
\qquad —.
3. A lever arm is the distance from the \qquad point to the point where the perpendicular \qquad is applied.
4. Find the lever arm for each of these forces and label the direction of each torque.

d.
\qquad

a. \qquad
e. \qquad
b. \qquad
c. \qquad
f. \qquad
5. \qquad
6. Calculate the net torque. NOTE: You will need to place the pivot point.

7. To solve torque problems, diagrams must be drawn. Complete the diagram for each situation described below. Draw a bold dot for the pivot point. Draw and label each force vector. (Bars, boards, etc. are considered uniform unless stated otherwise.) Label each torque as "cw" or "ccw".
a. A see saw weighs 500 N and is pivoted at the center.
b. A railroad tie weighing 1200 N is lifted at the left end.
c. A 3.0 m long board weighing 150 N is lifted at its ends by two people. A stack of bricks weighing 75 N is placed 1.0 m from the left end. To solve a problem, the pivot point is arbitrarily placed at the right end.

In \#6c, give the length of the lever arm for each force from left to right. (HINT: Four forces should be drawn.)

