$A P^{\circledR}$ Physics B
 Free-Response Scoring Guidelines

Question 5

10 points total

Distribution

 of points(a)
(i) 1 point

For the correct use of the ideal gas law to find the temperature of the gas in state 1
1 point

$$
\begin{aligned}
& P_{1} V_{1}=n R T_{1} \\
& T_{1}=P_{1} V_{1} / n R
\end{aligned}
$$

(ii) 2 points

For the correct application of the ideal gas law at states 3 and 1
1 point
$\frac{P V}{T}=n R=$ const, so $\frac{P_{3} V_{3}}{T_{3}}=\frac{P_{1} V_{1}}{T_{1}}$
For correct substitutions of $T_{3}=T_{1}$ and $V_{3}=\frac{V_{1}}{2}$ to arrive at the correct answer 1 point
$P_{3} \frac{V_{1}}{2}=P_{1} V_{1}$
$P_{3}=2 P_{1}$
(iii) 2 points

$$
W=-P \Delta V
$$

For recognition that for process $2 \rightarrow 3, \Delta V=0$, so $W_{2 \rightarrow 3}=0$
1 point
For the correct expression for the work done on the gas during process $1 \rightarrow 2$
1 point
$W_{1 \rightarrow 2}=-P_{1}\left(\frac{V_{1}}{2}-V_{1}\right)=\frac{P_{1} V_{1}}{2}$
$W_{\text {tot }}=W_{1 \rightarrow 2}+W_{2 \rightarrow 3}=\frac{P_{1} V_{1}}{2}+0$
$W_{\text {tot }}=\frac{P_{1} V_{1}}{2}$
(b) 3 points

For indicating that heat is added to the gas
1 point
For a correct justification
For example: From the first law of thermodynamics, $\Delta U=Q+W$, it follows that $Q=\Delta U-W$. During process $2 \rightarrow 3$ the volume is constant, so $W=-p \Delta V=0$.
The temperature increases and the internal energy is proportional to temperature, so ΔU is positive. Therefore Q is positive. Heat must be added to increase the internal energy.
Note: 1 point partial credit may be given for a partially correct answer.

$A P^{\circledR}$ Physics B
 Free-Response Scoring Guidelines

Question 5 (continued)

Distribution
 of points

(c) 2 points

For indicating that heat is added to the gas
1 point
For a correct justification
1 point
For example: From the first law of thermodynamics it follows that $Q=\Delta U-W$.
Process $3 \rightarrow 1$ is isothermal and since the internal energy is proportional to temperature, $\Delta U=0$. Therefore $Q=-W=-(-p \Delta V)=p \Delta V$. Since V increases, ΔV is positive. Therefore Q is positive. Heat must be added to maintain the internal energy.

