\qquad
\qquad
\qquad

AP REVIEW 2

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.
\qquad 1. How would you convert an angle in degrees to an angle in radians?
a. multiply the angle measured in degrees by $2 \pi / 180^{\circ}$
b. multiply the angle measured in degrees by $2 \pi / 360^{\circ}$
c. multiply the angle measured in degrees by $\pi / 360^{\circ}$
d. multiply the angle measured in degrees by $2 \pi r^{\circ}$
\qquad 2. A cave dweller rotates a pebble in a sling with a radius of 0.30 m counterclockwise through an arc length of 0.96 m . What is the angular displacement of the pebble?
a. $\quad 1.6 \mathrm{rad}$
b. -1.6 rad
c. $\quad 3.2 \mathrm{rad}$
d. -3.2 rad
\qquad 3. What is the approximate angular speed of a wheel rotating at the rate of $5.0 \mathrm{rev} / \mathrm{s}$?
a. $\quad 3.2 \mathrm{rad} / \mathrm{s}$
b. $\quad 1.6 \mathrm{rad} / \mathrm{s}$
c. $\quad 16 \mathrm{rad} / \mathrm{s}$
d. $31 \mathrm{rad} / \mathrm{s}$
\qquad 4. An automobile tire with a radius of 0.30 m starts at rest and accelerates at a constant angular acceleration of $2.0 \mathrm{rad} / \mathrm{s}^{2}$ for 5.0 s . What is the angular displacement of the tire?
a. $\quad 12 \mathrm{rad}$
b. 25 rad
c. $\quad 2.0 \mathrm{rad}$
d. 0.50 rad
\qquad 5. A cylinder with a diameter of 0.150 m rotates in a lathe at a constant angular speed of $35.6 \mathrm{rad} / \mathrm{s}$. What is the tangential speed of the surface of the cylinder?
a. $\quad 2.67 \mathrm{~m} / \mathrm{s}$
b. $\quad 5.34 \mathrm{~m} / \mathrm{s}$
c. $\quad 2.37 \times 10^{2} \mathrm{~m} / \mathrm{s}$
d. $\quad 4.75 \times 10^{2} \mathrm{~m} / \mathrm{s}$
\qquad 6. A wheel with a radius of 1.2 m rotates at a constant angular speed of $10.5 \mathrm{rad} / \mathrm{s}$. What is the tangential speed of a point 0.55 m from the wheel's axis?
a. $\quad 19 \mathrm{~m} / \mathrm{s}$
b. $\quad 5.8 \mathrm{~m} / \mathrm{s}$
c. $\quad 13 \mathrm{~m} / \mathrm{s}$
d. $\quad 8.7 \mathrm{~m} / \mathrm{s}$
7. An automobile tire with a radius of 0.3 m accelerates from rest at a constant $2 \mathrm{rad} / \mathrm{s}^{2}$ over a 5 s interval. What is the tangential component of acceleration for a point on the outer edge of the tire?
a. $\quad 30 \mathrm{~m} / \mathrm{s}^{2}$
b. $7 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad 0.6 \mathrm{~m} / \mathrm{s}^{2}$
d. $0.3 \mathrm{~m} / \mathrm{s}^{2}$
\qquad 8. A contestant in a game show spins a stationary wheel with a radius of 0.50 m so that it has a constant angular acceleration of $0.40 \mathrm{rad} / \mathrm{s}^{2}$. What is the tangential acceleration of a point on the edge of the wheel?
a. $\quad 0.20 \mathrm{~m} / \mathrm{s}^{2}$
b. $\quad 0.60 \mathrm{~m} / \mathrm{s}^{2}$
c. $\quad 1.3 \mathrm{~m} / \mathrm{s}^{2}$
d. $\quad 0.73 \mathrm{~m} / \mathrm{s}^{2}$
\qquad 9. A roller coaster loaded with passengers has a mass of $2.0 \times 10^{3} \mathrm{~kg}$; the radius of curvature of the track at the lowest point of the track is 24 m . If the vehicle has a tangential speed of $18 \mathrm{~m} / \mathrm{s}$ at this point, what force is exerted on the vehicle by the track?
a. $\quad 2.3 \times 10^{4} \mathrm{~N}$
b. $\quad 4.7 \times 10^{4} \mathrm{~N}$
c. $3.0 \times 10^{4} \mathrm{~N}$
d. $2.7 \times 10^{4} \mathrm{~N}$
10. To warm up before a game, a baseball pitcher tosses a 0.15 kg ball by rotating his forearm, which is 0.32 m in length, to accelerate the ball. The ball starts at rest and is thrown at a speed of $12 \mathrm{~m} / \mathrm{s}$ in 0.40 s . While the ball is in the pitcher's hand, what torque is applied to the ball to produce the angular acceleration?
a. $\quad 1.1 \mathrm{~N} \bullet \mathrm{~m}$
b. $\quad 11 \mathrm{~N} \bullet \mathrm{~m}$
c. $\quad 7.2 \mathrm{~N} \bullet \mathrm{~m}$
d. $\quad 1.4 \mathrm{~N} \bullet \mathrm{~m}$
11. A force of 4.0 N is applied to a door at an angle of 60.0° and a distance of 0.30 m from the hinge. What is the torque produced?
a. $\quad 1.0 \mathrm{~N} \bullet \mathrm{~m}$
b. $\quad 0.75 \mathrm{~N} \bullet \mathrm{~m}$
c. $\quad 0.87 \mathrm{~N} \bullet \mathrm{~m}$
d. $\quad 0.22 \mathrm{~N} \bullet \mathrm{~m}$
12. A heavy bank-vault door is opened by the application of a force of $3.0 \times 10^{2} \mathrm{~N}$ directed perpendicular to the plane of the door at a distance of 0.80 m from the hinges. What is the torque?
a. $\quad 120 \mathrm{~N} \bullet \mathrm{~m}$
b. $\quad 240 \mathrm{~N} \bullet \mathrm{~m}$
c. $\quad 300 \mathrm{~N} \bullet \mathrm{~m}$
d. $\quad 360 \mathrm{~N} \bullet \mathrm{~m}$
13. Which of the following is NOT an intrinsic property of an object?
a. mass
c. center of mass
b. moment of inertia
d. center of gravity
14. The dependence of equilibrium on the absence of net torque is
a. the first condition of equilibrium.
c. rotational equilibrium.
b. the second condition of equilibrium.
d. translational equilibrium.
15. A child with a weight of $4.50 \times 10^{2} \mathrm{~N}$ sits on a seesaw 0.60 m from the axis of rotation. How far from the axis of rotation on the other side should a child with a weight of $6.00 \times 10^{2} \mathrm{~N}$ sit so the seesaw will remain balanced?
a. 0.30 m
b. $\quad 0.40 \mathrm{~m}$
c. $\quad 0.45 \mathrm{~m}$
d. $\quad 0.50 \mathrm{~m}$
16. A bowling ball has a mass of 7.0 kg , a moment of inertia of $2.8 \times 10^{-2} \mathrm{~kg}^{\bullet} \mathrm{m}^{2}$, and a radius of 0.10 m . If it rolls down the lane without slipping at an angular speed of $4.0 \times 10^{1} \mathrm{rad} / \mathrm{s}$, what is its angular momentum?
a. $\quad 0.80 \mathrm{~kg} \bullet \mathrm{~m}^{2} / \mathrm{s}$
b. $\quad 1.4 \mathrm{~kg} \bullet \mathrm{~m}^{2} / \mathrm{s}$
c. $\quad 11 \mathrm{~kg} \bullet \mathrm{~m}^{2} / \mathrm{s}$
d. $\quad 1.1 \mathrm{~kg} \bullet \mathrm{~m}^{2} / \mathrm{s}$
17. A figure skater with arms drawn in spins on the ice at a rate of $5.0 \mathrm{rad} / \mathrm{s}$ and has a moment of inertia of 1.875 $\mathrm{kg} \bullet \mathrm{m}^{2}$. What is the angular momentum of the skater?
a. $\quad 2.5 \mathrm{~kg} \bullet \mathrm{~m}^{2} / \mathrm{s}$
b. $\quad 3.8 \mathrm{~kg} \bullet \mathrm{~m}^{2} / \mathrm{s}$
c. $\quad 9.4 \mathrm{~kg} \bullet \mathrm{~m}^{2} / \mathrm{s}$
d. $\quad 12 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}$
18. A table-tennis ball has an average density of $0.084 \mathrm{~g} / \mathrm{cm}^{3}$ and a diameter of 3.8 cm . What force can submerge the ball in water? $\left(\rho_{w}=1.00 \mathrm{~g} / \mathrm{cm}^{3}\right)$
a. $\quad 1.0 \mathrm{~N}$
b. $\quad 0.79 \mathrm{~N}$
c. $\quad 0.52 \mathrm{~N}$
d. $\quad 0.26 \mathrm{~N}$
19. Because a buoyant force acts in the opposite direction of gravity,
a. objects submerged in water have a net force smaller than their weight.
b. objects submerged in water have a net force larger than their weight.
c. objects submerged in water have a net force equal to their weight.
d. objects submerged in water appear to weigh more than they do in air.
20. The temperature in a container of fluid is
a. a measure of the potential energy of the particles of the fluid.
b. the total mass of the particles in the container.
c. a measure of the average kinetic energy of the particles of the fluid.
d. the number of particles in the container.
21. Increasing the temperature of a fluid
a. increases the speed of the particles.
b. decreases the speed of the particles.
c. decreases the number of particle collisions.
d. decreases the pressure.
22. A water tunnel has a circular cross section where the diameter diminishes from 3.6 m to 1.2 m . If the velocity of water flow is $3.0 \mathrm{~m} / \mathrm{s}$ in the larger part of the tunnel, what is the velocity of flow in the smaller part of the tunnel?
a. $\quad 9.0 \mathrm{~m} / \mathrm{s}$
b. $\quad 18 \mathrm{~m} / \mathrm{s}$
c. $27 \mathrm{~m} / \mathrm{s}$
d. $\quad 54 \mathrm{~m} / \mathrm{s}$
23. For an ideal fluid flowing through a horizontal pipe, Bernoulli's equation states that the sum of the pressure and energy per unit volume along the pipe does which of the following? (Assume measurements are taken along the pipe in the direction of fluid flow.)
a. increases as the pipe diameter increases
b. decreases as the pipe diameter increases
c. remains constant as the pipe diameter increases
d. increases, then decreases as the pipe diameter increases
24. At a constant pressure, $6.00 \mathrm{~m}^{3}$ of an ideal gas at 348 K is cooled until its volume is halved. What is the new temperature of the gas?
a. $\quad 174 \mathrm{~K}$
b. $\quad 696 \mathrm{~K}$
c. $\quad 19.3 \mathrm{~K}$
d. $\quad 116 \mathrm{~K}$
25. A substance's temperature increases as a direct result of
a. energy being removed from the particles of the substance.
b. kinetic energy being added to the particles of the substance.
c. a change in the number of atoms and molecules in a substance.
d. a decrease in the volume of the substance.
26. Which of the following is proportional to the kinetic energy of atoms and molecules?
a. elastic energy
c. potential energy
b. temperature
d. thermal equilibrium
27. If two small beakers of water, one at $70^{\circ} \mathrm{C}$ and one at $80^{\circ} \mathrm{C}$, are emptied into a large beaker, what is the final temperature of the water?
a. less than $70^{\circ} \mathrm{C}$
c. between $70^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$
b. greater than $80^{\circ} \mathrm{C}$
d. The water temperature will fluctuate.
28. A $5.00 \times 10^{2} \mathrm{~kg}$ object is attached by a rope through a pulley to a paddle-wheel shaft that is placed in a well-insulated tank holding 25.0 kg of water. The object is allowed to fall, causing the paddle wheel to rotate, churning the water. If the object falls a vertical distance of $1.00 \times 10^{2} \mathrm{~m}$ at constant speed, what is the temperature change of the water? $\left(c_{p}=4186 \mathrm{~J} / \mathrm{kg} \bullet^{\circ} \mathrm{C}\right.$ and $\left.g=9.81 \mathrm{~m} / \mathrm{s}^{2}\right)$
a. $\quad 1.96 \times 10^{40} \mathrm{C}$
b. $\quad 4.69 \times 10^{30} \mathrm{C}$
c. $4.69^{\circ} \mathrm{C}$
d. $0.800^{\circ} \mathrm{C}$
29. What is the temperature increase of 4.0 kg of water when it is heated by an $8.0 \times 10^{2} \mathrm{~W}$ immersion heater for exactly 10.0 min ? $\left(c_{p}=4186 \mathrm{~J} / \mathrm{kg} \bullet^{\circ} \mathrm{C}\right)$
a. $57^{\circ} \mathrm{C}$
b. $51^{\circ} \mathrm{C}$
c. $29^{\circ} \mathrm{C}$
d. $\quad 14^{\circ} \mathrm{C}$
30. The use of fiberglass insulation in the outer walls of a building is intended to minimize heat transfer through what process?
a. conduction
c. convection
b. radiation
d. vaporization
31. Which of the following is a thermodynamic process that takes place at constant volume so that no work is done on or by the system?
a. adiabatic process
c. isovolumetric process
b. isothermal process
d. isobaric process
32. How is conservation of internal energy expressed for an isolated system?
a. $\quad Q=W=0$, so $\Delta U=0$ and $U_{i}=U_{f}$
b. $Q=0$, so $\Delta U=-W$
c. $\Delta T=0$, so $\Delta U=0$; therefore, $\Delta U=Q-W=0$, or $Q=W$
d. $\quad \Delta V=0$, so $P \Delta V=0$ and $W=0$; therefore, $\Delta U=Q$
33. The internal energy of a system is initially 63 J . A total of 71 J of energy is added to the system as heat while the system does 59 J of work. What is the system's final internal energy?
a. 51 J
b. 75 J
c. 67 J
d. 190 J
34. Over several cycles, a refrigerator does $1.73 \times 10^{4} \mathrm{~J}$ of work on the refrigerant. The refrigerant removes 8.11 $\times 10^{4} \mathrm{~J}$ as heat from the air inside the refrigerator. How much energy is delivered to the outside air?
a. $\quad 3.19 \times 10^{4} \mathrm{~J}$
b. $4.92 \times 10^{4} \mathrm{~J}$
c. $\quad 6.38 \times 10^{4} \mathrm{~J}$
d. $\quad 9.84 \times 10^{4} \mathrm{~J}$
35. Over several cycles, a refrigerator does $5.13 \times 10^{4} \mathrm{~J}$ of work on the refrigerant. The refrigerant, in turn, removes $9.63 \times 10^{4} \mathrm{~J}$ as heat from the air inside the refrigerator. What is the net change in the internal energy of the refrigerant?
a. $\quad 0.00 \mathrm{~J}$
b. $4.92 \times 10^{4} \mathrm{~J}$
c. $\quad 6.38 \times 10^{4} \mathrm{~J}$
d. $\quad 9.84 \times 10^{4} \mathrm{~J}$
36. An engine absorbs 2150 J as heat from a hot reservoir and gives off 750 J as heat to a cold reservoir during each cycle. How much work is done during each cycle?
a. 750 J
b. 1400 J
c. 2150 J
d. 2900 J
37. According to the second law of thermodynamics, the heat received by a heat engine operating in a complete cycle from a high-temperature reservoir
a. must be completely converted to work.
b. equals the entropy increase.
c. can be completely converted to internal energy.
d. cannot be completely converted to work.
38. A turbine exhausts 69400 J of energy added as heat when it puts out 21300 J of net work. What is the efficiency of the turbine?
a. $\quad 3.26$
b. 0.307
c. 0.693
d. 0.235
39. A ball is thrown against a brick wall. After the collision,
a. the kinetic energy increases, and the ball is capable of doing more work.
b. the kinetic energy decreases, and the ball is capable of doing less work.
c. the kinetic energy increases, and the ball is capable of doing less work.
d. the kinetic energy decreases, and the ball is capable of doing more work.
40. When a system's disorder is increased,
a. less energy is available to do work.
c. no energy is available to do work.
b. more energy is available do work.
d. no work is done.

AP REVIEW 2

Answer Section

MULTIPLE CHOICE

1. B
2. C
3. D
4. B
5. A
6. B
7. C
8. A
9. D
10. D
11. A
12. B
13. B
14. B
15. C
16. D
17. C
18. D
19. A
20. C
21. A
22. C
23. C
24. A
25. B
26. B
27. C
28. C
29. C
30. A
31. C
32. A
33. B
34. D
35. A
36. B
37. D
38. D
39. B

ID: A
40. A

