Freefall Lab

Question: Can you describe the type of motion that a free falling object has?

Hypothesis:

Procedures:

Equipment:

Data:

Height (m)	$\mathrm{V}_{\mathbf{0}}$	$\mathrm{a}=\Delta \mathrm{v} / \Delta \mathrm{t}\left(\mathrm{m} / \mathrm{s}^{2}\right)$
	$\mathbf{0}$	
	0	
	0	
	0	
	0	
	$\neq 0$	

\qquad

Analysis:

- If you just "drop" or release the object, what can you assume about its initial position (Y_{0}) and initial velocity $\left(\mathrm{v}_{0}\right)$?
- Re-write the equations if both values above were zero
- What did you observe about the acceleration when initial velocity was zero?
- Look at your data, what difference did it make to the acceleration if the initial velocity was not zero?
- What is the connection between a falling object's acceleration and gravity?
- Explain what you think would happen if you did this experiment on the moon?
- Explain what you think would happen if you did this experiment on the space station?

