

Formation of Images by Spherical Mirrors
Problem 23-10

A mirror at an amusement park shows an upright image of any person who stands 1.4 m in front of it . If the image is three times the person's height, what is the radius of curvature?

$$
\begin{aligned}
M=\frac{h_{i}}{h_{0}}=-\frac{d_{i}}{d_{0}} & \frac{1}{f}=\frac{1}{d_{0}}+\frac{1}{d_{i}} \text { or } f=\frac{d_{0} d_{i}}{d_{0}+d_{i}} \\
d_{i}=M d_{0}=3(1.4 \mathrm{~m}) & f=\frac{1.4 \mathrm{~m}(-4.2 \mathrm{~m})}{1.4 \mathrm{~m}+(-4.2 \mathrm{~m})}=2.1 \mathrm{~m} \\
d_{i}=4.2 \mathrm{~m} &
\end{aligned}
$$

$$
\mathrm{r}=2 \mathrm{f}=2(2.1 \mathrm{~m})=4.2 \mathrm{~m}
$$

Formation of Images by Spherical Mirrors

Formation of Images by Spherical Mirrors

Problem 23-15

The image of a distant tree is virtual and very small when viewed in a curved mirror. The image appears to be 18 cm behind the mirror. What kind of mirror is it, and what is its radius of curvature?

$$
\begin{aligned}
& \frac{1}{f}=\frac{1}{d_{o}}+\frac{1}{d_{i}}=\frac{1}{\infty}+\frac{1}{-18 \mathrm{~cm}} \quad f=-18 \mathrm{~cm} \\
& r=2 f=2(-18 \mathrm{~cm}) \quad=-36 \mathrm{~cm}
\end{aligned}
$$

TABLE 23-1 Indices of Refraction ${ }^{\dagger}$		Index of Refraction
Medium	$n=c / v$	In general, light slows somewhat when traveling through a medium. The index of refraction of the medium is the ratio of the speed of light in vacuum to the speed of light in the medium:
Vacuum	1.0000	
Air (at STP)	1.0003	
Water	1.33	
Ethyl alcohol	1.36	
Glass		
Fused quartz	1.46	
Crown glass	1.52	
Light flint	1.58	
Lucite or Plexiglas	1.51	
Sodium chloride	1.53	
Diamond	2.42	
${ }^{*} \lambda=589 \mathrm{~nm}$.		0

Index of Refraction
Problem 23-24
The speed of light in ice is $2.29 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
What is the index of refraction of ice?
$\qquad \mathrm{n}=\frac{\mathrm{c}}{\mathrm{v}}=\frac{3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}}{2.29 \times 10^{8} \mathrm{~m} / \mathrm{s}}$ =1.31

Index of Refraction

Problem 23-32

Light is incident on an equilateral glass prism at a 45.0° angle to one face. Calculate the angle at which light emerges from the opposite face. Assume that $\mathbf{n}=\mathbf{1 . 5 8}$.

$$
\begin{aligned}
& \mathrm{n}_{\mathrm{air}} \sin \theta_{1}=\mathrm{n}_{2} \sin \theta_{2} \\
& 1.00 \sin 45^{\circ}=1.58 \sin \theta_{2} \Rightarrow \theta_{2}=26.6^{\circ} \\
& \alpha+\beta+\gamma=180^{\circ} \\
& 60^{\circ}+\left(90^{\circ}-26.6^{\circ}\right)+\left(90^{\circ}-\theta_{3}\right)=180^{\circ} \Rightarrow \theta_{3}=33.6^{\circ} \\
& \mathrm{n} \sin \theta_{3}=\mathrm{n}_{\text {air }} \sin \theta_{4} \\
& 1.58 \sin 33.6^{\circ}=1.00 \sin \theta_{4} \Rightarrow \theta_{4}=60.5^{\circ}
\end{aligned}
$$

Formation of Images by Spherical Mirrors
Magnification: $M=\frac{h_{i}}{h_{0}}=-\frac{d_{i}}{d_{0}}$
Power: \quad The unit for lens power is the diopter (D).

$$
P=\frac{1}{f}
$$

A 30 cm focal length lens has a power
$P=\frac{1}{f}=\frac{1}{0.30 \mathrm{~m}}=3.33 \mathrm{D}$

