1.Convert each of the following temperatures from Fahrenheit to Centigrade.
a. $35^{\circ} \mathrm{F}$
b. $-85^{\circ} \mathrm{F}$
c. $220^{\circ} \mathrm{F}$
d. $2550{ }^{\circ} \mathrm{F}$
e. $1520^{\circ} \mathrm{F}$
2. Convert each of the following temperatures from Centigrade to Fahrenheit.
a. $-40{ }^{\circ} \mathrm{C}$
b. $-273{ }^{\circ} \mathrm{C}$
c. $55^{\circ} \mathrm{C}$
d. $110^{\circ} \mathrm{C}$
e. $1220^{\circ} \mathrm{C}$
3. Convert each of the following to Kelvin temperatures.
a. $72{ }^{\circ} \mathrm{F}$
b. $-40{ }^{\circ} \mathrm{C}$
c. $-40^{\circ} \mathrm{F}$
d. $110^{\circ} \mathrm{C}$
e. $3500{ }^{\circ} \mathrm{F}$
4. A piece of copper wire $\left[\alpha=1.7 \times 10^{-5} /{ }^{\circ} \mathrm{C}\right]$ has a length of exactly 50.00 meters when at a temperature of $12.0^{\circ} \mathrm{C}$. a. What will be the increase in length of this wire if it's temperature is raised to $232{ }^{\circ} \mathrm{C}$?
b. What will be the length of this wire if its temperature is raised to $232{ }^{\circ} \mathrm{C}$?
5. A cylinder, which has a diameter of 0.99985 cm , is to be inserted into a hole in a steel plate $\left[\alpha=1.2 \times 10^{-5} /{ }^{\circ} \mathrm{C}\right]$. The hole has a diameter of 0.99970 cm at $30.0^{\circ} \mathrm{C}$. To what temperature must the plate be heated in order for the cylinder to just barely fit?
6. At $20.0^{\circ} \mathrm{C}$ a steel ball $\left[\alpha=1.20 \times 10^{-5} /{ }^{\circ} \mathrm{C}\right]$ has a diameter of 0.9000 cm , while the diameter of a hole in an Aluminum plate $\left[\alpha=2.50 \times 10^{-5} /{ }^{\circ} \mathrm{C}\right]$ is 0.8990 cm . At what single temperature will the ball just barely pass through the hole?
7. At $20.0^{\circ} \mathrm{C}$ a steel ball $\left[\beta=3.5 \times 10^{-5} /{ }^{\circ} \mathrm{C}\right]$ has a diameter of 0.9000 cm . The temperature of this ball is increased to $55.0^{\circ} \mathrm{C}$. What will be the new volume for this ball?
8. A cube of Copper [$\rho=8.9 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$], each edge of which is 3.50 cm ., is floating in a container full of Mercury $\left[\rho=13.6 \times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}\right]$. Both are initially at a temperature of $20.0^{\circ} \mathrm{C}$.
a. What is the mass of the cube of Copper?
b. What is the weight of the cube of Copper?
c. What percentage of the copper block is submerged below the surface of the Mercury?

Both the Copper $\left[\beta=5.6 \times 10^{-5} /{ }^{\circ} \mathrm{C}\right]$ and the Mercury $\left[\beta=1.8 \times 10^{-4} /{ }^{\circ} \mathrm{C}\right]$ are heated to a temperature of $110{ }^{\circ} \mathrm{C}$.
d. What percentage of the Copper is now submerged below the surface of the Mercury?
9. How much heat must be added to 120 grams of copper [$\left.\mathrm{c}_{\mathrm{p}}=390 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}\right]$ in order to increase its temperature by $145^{\circ} \mathrm{C}$?
10. 750 Calories of heat are added to 250 grams of Lead $\left[\mathrm{c}_{\mathrm{p}}=0.031 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}\right]$ initially at a temperature of $28.0^{\circ} \mathrm{C}$. What will be the final temperature of this piece of Lead?
11. How much heat must be added to 65.0 ml of water in order to increase its temperature from $25^{\circ} \mathrm{C}$ to $95^{\circ} \mathrm{C}$?

12. How much heat would be required to raise the temperature of 625 grams of Mercury $\left[\mathrm{c}_{\mathrm{p}}=0.033 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}\right]$ from room temperature $\left[25.0^{\circ} \mathrm{C}\right]$ to $325^{\circ} \mathrm{C}$?
13. A ball of Copper $\left[\mathrm{c}_{\mathrm{p}}=390 \mathrm{~J} / \mathrm{kg}^{\circ} \mathrm{C}\right]$ has a mass of 165 grams and is initially at a temperature of $115^{\circ} \mathrm{C}$. This ball is quickly inserted into an insulated cup containing 125 ml of water at a temperature of $22.0^{\circ} \mathrm{C}$.
a. What will be the final, equilibrium temperature of the ball and the water?
b. How much heat did the copper ball lose to the water?
c. How much heat did the water gain from the ball?
14. A ball of Aluminum [$\mathrm{c}_{\mathrm{p}}=0.22 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}$] has a mass of 82.0 grams and is initially at a temperature of $145^{\circ} \mathrm{C}$. This ball is quickly inserted into an insulated cup containing 330 ml of water at a temperature of $28.0^{\circ} \mathrm{C}$. What will be the final, equilibrium temperature of the ball and the water?
15. Assume that you have 500 gm of ice at $-25.0^{\circ} \mathrm{C}$.
a. How much heat would be required to raise the temperature of this ice to $0.0^{\circ} \mathrm{C}$?
b. How much heat is required to melt this ice into water at $0.0^{\circ} \mathrm{C}$?
c. How much heat would be required to bring this water to the boiling point $100^{\circ} \mathrm{C}$?
d. How much heat would be required to convert this water into steam at $100^{\circ} \mathrm{C}$?
e. How much heat would be required to raise the temperature of this steam to $125^{\circ} \mathrm{C}$?
f. How much total heat is required to heat 500 gm of ice at $-25.0^{\circ} \mathrm{C}$ into 500 gm of steam at $125^{\circ} \mathrm{C}$?
16. How much heat would be required to convert 125 grams of ice at $-40.0^{\circ} \mathrm{C}$ into steam at $150{ }^{\circ} \mathrm{C}$?
17. A ball of copper $\left[\mathrm{c}_{\mathrm{p}}=.093 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}\right]$ has a mass of 125 grams and is at a temperature of $145^{\circ} \mathrm{C}$. This ball is placed into a calorimeter which contains 25.0 grams of ice at $-35.0^{\circ} \mathrm{C}$. What will be the final temperature of the copper ball?
18. What will be the final temperature if 15.0 grams of steam at $125^{\circ} \mathrm{C}$ is mixed with 55.0 grams of ice at $-10.0^{\circ} \mathrm{C}$?
19. What will be the final temperature if 85.0 grams of water at $90.0^{\circ} \mathrm{C}$ is mixed with 22.0 grams of ice at $-25^{\circ} \mathrm{C}$?
20. How much heat would be required to melt a 35.0 gm piece of lead initially at $25.0^{\circ} \mathrm{C}$? $\left[\mathrm{c}_{\mathrm{p}}=0.031 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}, \mathrm{L}_{\text {fusion }}=5.9 \mathrm{cal} / \mathrm{gm}\right.$, melting point $=327^{\circ} \mathrm{C}$]
21. How much heat would be required to melt a 115 gm piece of silver initially at $28.0^{\circ} \mathrm{C}$? $\left[\mathrm{c}_{\mathrm{p}}=0.056 \mathrm{cal} / \mathrm{gm}^{\circ} \mathrm{C}\right.$ and $\mathrm{L}_{\text {fusion }}=21.0 \mathrm{cal} / \mathrm{gm}$, melting point $=961{ }^{\circ} \mathrm{C}$]
22. What will be the average linear kinetic energy of the molecules in an ideal gas at $35.0^{\circ} \mathrm{C}$?
23. What will be the average RMS velocity of the molecules in Helium gas at $1200^{\circ} \mathrm{C}$?

Answers to opposite side: 1a. $1.70{ }^{\circ} \mathrm{C}$			b. -65.0	c. $104{ }^{\circ} \mathrm{C}$		e. $827{ }^{\circ} \mathrm{C}$		
2a. $-40.0{ }^{\circ} \mathrm{F}$	b. $-459{ }^{\circ} \mathrm{F}$	c. $131{ }^{\circ} \mathrm{F}$	d. $230{ }^{\circ} \mathrm{F}$	e. $2230{ }^{\circ} \mathrm{F}$	3a. $295{ }^{\circ} \mathrm{K}$	b. $233{ }^{\circ} \mathrm{K}$	c. $233{ }^{\circ} \mathrm{K}$	d. $383{ }^{\circ} \mathrm{K}$
$3 \mathrm{e} .2200{ }^{\circ} \mathrm{K}$	4a. 0.19 m	b. 50.19 m	5. $42.5{ }^{\circ} \mathrm{C}$	6. $106{ }^{\circ} \mathrm{C}$	7. $0.382 \mathrm{~cm}^{3}$	8a. 0.382 kg	b. 3.74 N	c. 65.4 \%
8d. 66.1 \%	9. 6790 J	10. $125{ }^{\circ} \mathrm{C}$	11.4550 cal					

