

Temperature,Thermal Expansion and the Gas Laws

Temperature and Thermometers
Thermal Equilibrium
Thermal Expansion
The Ideal Gas Law
Molecular Interpretation of Temperature

Temperature and Thermometers

Temperature is a measure of how hot or cold something is.
Thermometers are instruments designed to measure temperature. In order to do this, they take advantage of some property of matter that changes with temperature.

Most materials expand when heated.

Temperature and Thermometers

Common thermometers used today include the liquid-in-glass type and the bimetallic strip.

Temperature and Thermometers

Temperature is generally measured using either the Kelvin, Celsius, or the Fahrenheit scale.

Kelvin Celsius Fahrenheit

Thermal Equilibrium

Two objects placed in thermal contact will eventually come to the same temperature. When they do, we say they are in thermal equilibrium.

The Zeroth Law of Thermodynamics

If A is in thermal equilibrium with C and B is in thermal equilibrium with C Then A and B are in thermal equilibrium.

Thermal Expansion

Expansion occurs when an object is heated.

Does the hole increase or decrease in size?

A steel washer is heated

Thermal Expansion

When the washer is heated

The hole becomes larger

Thermal Expansion

Thermal Expansion

Expansion Problem

A cylindrical brass sleeve is to be shrunk-fitted over a brass shaft whose diameter is 3.212 cm at $0^{\circ} \mathrm{C}$. The diameter of the sleeve is 3.196 cm at $0^{\circ} \mathrm{C}$.

To what temperature must the sleeve be heated before it will slip over the shaft?

Thermal Expansion

Expansion Problem

shaft sleeve

To what temperature must the sleeve be heated before it will slip over the shaft?

Thermal Expansion

Volume Expansion

$$
\begin{aligned}
& \mathbf{L}_{\mathbf{0}}+\Delta \mathbf{L} \\
& +\Delta \mathbf{L} \square \\
& \begin{array}{l}
\text { New Volume } \\
\mathbf{L}_{0}+\Delta \mathbf{L}
\end{array} \\
& V=\left(\mathrm{L}_{0}+\Delta \mathrm{L}\right)^{3}
\end{aligned}
$$

Initial Volume

$$
V_{0}=L_{0}^{3}
$$

$$
\begin{aligned}
& \mathrm{V}=\mathrm{L}_{0}^{3}+3 \mathrm{~L}_{0}^{2} \Delta \mathrm{~L}+3 \\
& \Delta \mathrm{~V}=\mathrm{V}-\mathrm{V}_{0}=3 \mathrm{~L}_{0}^{2} \Delta \mathrm{~L}_{X} \\
& \Delta \mathrm{~V}=3 \mathrm{~L}_{0}^{2}\left(\alpha \mathrm{~L}_{0} \Delta \mathrm{~T}\right) \\
& \Delta \mathrm{V}=3 \alpha \mathrm{~L}_{0}^{3} \Delta \mathrm{~T} \\
& \Delta \mathrm{~V}=3 \alpha \mathrm{~V}_{0} \Delta \mathrm{~T}
\end{aligned}
$$

Thermal Expansion

$$
\Delta \mathbf{V}=3 \alpha \mathbf{V}_{\mathbf{0}} \Delta \mathbf{T}
$$

$$
\mathbf{V}=\mathbf{V}_{\mathbf{0}}(\mathbf{1}+\beta \Delta \mathbf{T})
$$

Thermal Expansion

Expansion Problem

An automobile fuel tank is filled to the brim with 45 L of gasoline at $10{ }^{\circ} \mathrm{C}$. Immediately afterward, the vehicle is parked in the Sun, where the temperature is $35^{\circ} \mathrm{C}$. How much gasoline overflows from the tank as a result of expansion?

Thermal Expansion

Intermolecular Distance \longrightarrow

The Ideal Gas Law

The Ideal Gas Law

A mole (mol) is defined as the number of grams of a substance that is numerically equal to the molecular mass of the substance:
$1 \mathbf{~ m o l ~} \mathrm{H}_{2}$ has a mass of $\mathbf{2} \mathbf{g}$
$1 \mathbf{~ m o l ~ N e}$ has a mass of 20 g
1 mol CO 2 has a mass of 44 g
The number of moles in a certain mass of material:

$$
\mathrm{n}(\mathrm{~mol})=\frac{\text { mass }(\mathrm{grams})}{\text { molecular mass }(\mathrm{g} / \mathrm{mol})} \quad \Rightarrow \mathrm{n}=\frac{\mathrm{m}}{\mathbf{M}}
$$

The number of moles in a certain number of particles:

$$
\mathrm{n}(\mathrm{~mol})=\frac{\text { molecules (particles) }}{\text { Avogadro's number (particles/mol) }} \Rightarrow \mathbf{n}=\frac{\mathbf{N}}{\mathbf{N}_{\mathrm{A}}}
$$

The Ideal Gas Law

The Ideal Gas Law

Boltzmann's Constant

$$
\mathrm{PV}=\mathrm{nRT}=\mathbf{N k T}
$$

The Ideal Gas Law

A gas is contained in an $8.0 \times 10^{-3} \mathrm{~m}^{\mathbf{3}}$ vessel at $20^{\circ} \mathrm{C}$ and a pressure of $9.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$.
(a) Determine the number of moles of gas in the vessel.

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{9.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\left(8.0 \times 10^{-3} \mathrm{~m}^{2}\right)}{8.31 \mathrm{~J} / \mathrm{mol} \cdot \mathrm{~K}(293 \mathrm{~K})} \\
& \mathrm{n}
\end{aligned}
$$

The Ideal Gas Law

A gas is contained in an $8.0 \times 10^{-3} \mathrm{~m}^{3}$ vessel at 20 oC and a pressure of $9.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2} . \quad \mathrm{n}=3.0 \mathrm{~mol}$
(b) How many molecules are in the vessel?

$$
\begin{aligned}
& \mathrm{N}= \mathrm{nN} \\
& \mathrm{~A} \\
&=3.0 \mathrm{~mol}\left(6.02 \times 10^{23} \underset{\text { mol }}{\text { molecules }}\right) \\
& \mathrm{N}=1.8 \times 10^{24} \text { molecules }
\end{aligned}
$$

The Ideal Gas Law

Problem

A cylinder with a moveable piston contains gas at a temperature of $27^{\circ} \mathrm{C}$, a volume of $1.5 \mathrm{~m}^{3}$, and an absolute pressure of $0.20 \times 10^{5} \mathrm{~Pa}$.

What will be its final temperature if the gas is compressed to $0.70 \mathrm{~m}^{3}$ and the absolute pressure increases to $0.80 \times 10^{5} \mathrm{~Pa}$?

The Ideal Gas Law

Problem

What will be its final temperature if the gas is compressed to $0.70 \mathrm{~m}^{3}$ and the absolute pressure increases to $0.80 \times 10^{5} \mathrm{~Pa}$?

$$
\mathbf{P V}=\mathbf{n R T} \Rightarrow \frac{\mathbf{P V}}{\mathbf{T}}=\mathbf{n R}=\text { constant }
$$

$$
\begin{aligned}
& \frac{P_{f} V_{f}}{T_{f}}=\frac{P_{i} V_{i}}{T_{i}} \\
& T_{f}=T_{i}\left(\frac{\mathbf{P}_{f} V_{f}}{\mathbf{P}_{i} V_{i}}\right)=300 \mathrm{~K} \frac{\left(0.8 \times 10^{5} \mathrm{~Pa}\right) 0.7 \mathrm{~m}^{3}}{\left(0.2 \times 10^{5} \mathrm{~Pa}\right) 1.5 \mathrm{~m}^{3}}
\end{aligned}
$$

$$
\begin{aligned}
= & 560 \mathrm{~K} \\
& -273
\end{aligned}
$$

Molecular Interpretation of Temperature

Assumptions of kinetic theory:

1) large number of molecules, moving in random directions with a variety of speeds
2) molecules are far apart, on average
3) molecules obey laws of classical mechanics and interact only when colliding
4) collisions are perfectly elastic

Molecular Interpretation of Temperature

The force exerted on the wall by the collision of one molecule of mass m is

$$
\mathbf{F}=\frac{\Delta(\mathrm{mv})}{\Delta t}=\frac{2 \mathrm{mv}_{\mathbf{x}}}{2 L / \mathbf{v}_{\mathbf{x}}}=\frac{\mathbf{m v}_{\mathbf{x}}^{2}}{\mathbf{L}}
$$

Then the average force due to N molecules colliding with that wall is

$$
\overline{\mathbf{F}}=\frac{\mathbf{m}}{\mathbf{L}} \mathbf{N} \overline{\mathbf{v}_{\mathbf{x}}^{2}}
$$

Molecular Interpretation of Temperature

$$
\overline{\mathbf{F}}=\frac{\mathbf{m}}{\mathbf{L}} \mathbf{N} \overline{\mathbf{v}_{\mathbf{x}}^{2}}
$$

The averages of the squares of the speeds in all three directions are equal:

$$
\overline{\mathrm{F}}=\frac{1}{3}\left(\frac{\mathbf{m N} \overline{\mathbf{v}}^{2}}{\mathrm{~L}}\right)
$$

So the pressure on the wall is:

$$
\mathbf{P}=\frac{\overline{\mathbf{F}}}{\mathrm{A}}=\frac{1}{3} \frac{\mathbf{N m} \overline{\mathbf{v}^{2}}}{\mathrm{AL}}=\frac{1}{3} \frac{\mathbf{N m} \overline{\mathbf{v}^{2}}}{\mathbf{V}}
$$

Molecular Interpretation of Temperature

$$
P=\frac{1}{3} \frac{N m \overline{v^{2}}}{V}
$$

Rewriting,

$$
\mathbf{P V}=\frac{2}{3} \mathbf{N}\left(\frac{1}{2} \mathbf{m} \overline{v^{2}}\right)=\mathbf{N k T}
$$

SO

$$
\begin{gathered}
\frac{2}{3}\left(\frac{1}{2} \mathrm{~m} \overline{v^{2}}\right)=\mathrm{kT} \\
(\overline{\mathrm{KE}})=\frac{1}{2} \mathrm{~m} \overline{v^{2}}=\frac{3}{2} \mathrm{kT}
\end{gathered}
$$

The average translational kinetic energy of the molecules in an ideal gas is directly proportional to the temperature of the gas.

Molecular Interpretation of Temperature

Molecular Kinetic Energy

Temperature is a measure of the average molecular kinetic energy.

$$
\mathbf{v}_{(\mathrm{rms})}=\sqrt{\frac{3 \mathbf{k} \mathbf{T}}{\mathbf{m}}}
$$

Molecular Interpretation of Temperature

Problem

What is the total random kinetic energy of all the molecules in one mole of hydrogen at a temperature of 300 K .

$$
K=6.02 \times 10^{23} \text { molecules }\left(\frac{3}{2}\right) 1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}(300 \mathrm{~K})
$$

$$
\mathrm{K}=3740 \mathrm{~J}
$$

Molecular Interpretation of Temperature

Problem

Calculate the rms speed of a Nitrogen molecule ($\mathbf{N}_{\mathbf{2}}$) when the temperature is $100{ }^{\circ} \mathrm{C}$.

Mass of \mathbf{N}_{2} molecule:

$$
\mathrm{m}=\frac{28.0 \times 10^{-3} \mathrm{~kg} / \mathrm{mole}}{6.02 \times 10^{23} \mathrm{molecules} / \mathrm{mole}}=4.65 \times 10^{-26} \mathrm{~kg}
$$

rms speed:

$$
\mathrm{v}_{(\mathrm{rms})}=\sqrt{\frac{3 \mathrm{kT}}{\mathrm{~m}}}=\sqrt{\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right) 373 \mathrm{~K}}{4.65 \times 10^{-26} \mathrm{~kg}}}
$$

$$
\mathrm{v}_{(\mathrm{rms})}=\mathbf{5 7 6} \mathrm{m} / \mathrm{s}
$$

Molecular Interpretation of Temperature

Problem

If 2.0 mol of an ideal gas are confined to a 5.0 L vessel at a pressure of $8.0 \times 10^{5} \mathrm{~Pa}$, what is the average kinetic energy of a gas molecule?

Temperature of the gas:

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \mathrm{~T}=\frac{\mathrm{PV}}{\mathrm{nR}}=\frac{8.0 \times 10^{5} \mathrm{~Pa}\left(5.0 \times 10^{-3} \mathrm{~m}^{3}\right)}{2.0 \mathrm{~mol}\left(8.31 \frac{\mathrm{~J}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)}=244 \mathrm{~K}
\end{aligned}
$$

Kinetic energy:
$\mathrm{K}=\frac{3}{2} \mathrm{kT}=\frac{3}{2}\left(1.38 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{~K}}\right) 244 \mathrm{~K}=1.38 \times 10^{-23} \frac{\mathrm{~J}}{\text { molecule }}$

Molecular Interpretation of Temperature

Mean and rms Speed
Mean Speed:

$$
\begin{gathered}
=\frac{1+6+4+2+6+3+2+5}{8} \\
v_{(\text {mean })}=3.6 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

rms Speed:

$$
\begin{aligned}
& =\sqrt{\frac{(1)^{2}+(6)^{2}+(4)^{2}+(2)^{2}+(6)^{2}+(3)^{2}+(2)^{2}+(5)^{2}}{8}} \\
& \left.v_{(\mathrm{rms})}\right)=4.0 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Summary

Temperature is a measure of how hot or cold something is, and is measured by thermometers.

There are three temperature scales in use: Celsius, Fahrenheit, and Kelvin.

When heated, a solid will get longer by a fraction given by the coefficient of linear expansion.

The fractional change in volume of gases, liquids, and solids is given by the coefficient of volume expansion.

Summary

Ideal gas law: $\quad \mathbf{P V}=\mathbf{n R T}$

One mole of a substance is the number of grams equal to the atomic or molecular mass.

Each mole contains Avogadro's number of atoms or molecules.
The average kinetic energy of molecules in a gas is proportional to the temperature:

$$
(\overline{\mathrm{KE}})=\frac{1}{2} \mathrm{~m} \overline{\mathrm{v}^{2}}=\frac{3}{2} \mathrm{kT}
$$

