

The unit for luminous flux is the lumen which will be given a quantitative definition later.

The Lumen as a Unit of Flux

One **lumpn** (Im) is the **luminous flux** emitted from a 1/60 cm² opening in a standard source and included in a solid angle of one steradian (1 sr).

In practice, sources of light are usually rated by comparison to a commercially prepared standard light source.

A typical 100-W incandescent light bulb emits a total radiant power of about 1750 lm. This is for light emitted in all directions.

The Lumen in Power Units

Recalling that luminous flux is really radiant power allows us to define the lumen as follows:

One lumen is equal to 1/680 W of yellowgreen light of wavelength 555 nm.

A disadvantage of this approach is the need to refer to sensitivity curves to determine the flux for different colors of light.

