

Electronagnetic Waves

Wave Properties:

1. Waves travel at the speed of light C.
2. Perpendicular electric and magnetic fields.
3. Require no medium for propagation.

Objectives: After completing this

 module, you should be able to:
The Wavelengths of Light

The electromagnetic spectrum spreads over a tremendous range of frequencies or wavelengths.
The wavelength λ is related to the frequency f.

$$
c=f \lambda \quad c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

Those EM waves that are visible (light) have wavelengths that range from 0.00004 to 0.00007 cm .

A Beginning Definition

All objects are emitting and absorbing EM radiation. Consider a poker placed in a fire. \longrightarrow

As heating occurs, the emitted EM waves have higher energy and eventually become visible. First red . . . then white.

Light may be defined as electromagnetic radiation that is capable of affecting the sense of sight.

Photons and Light Rays

Light may be thought of as little bundles of waves emitted in discrete packets called photons.

The wave treatment uses rays to show the direction of advancing wave fronts.

Light rays are convenient for describing how light behaves.

Properties of Light

Any study of the nature of light must explain the following observed properties:

- Light travels in straight lines.
- Reflection: Light striking a smooth surface turns back into the original medium.
- Refraction: Light bends when entering a transparent medium.

Light Rays and Shadows

A geometric analysis may be made of shadows by tracing light rays from a point light source:

The dimensions of the shadow can be found by using geometry and known distances.

The-Nature of Light

Physicists have studied light for centuries, finding that it sometimes behaves as a particle and
sometimes as a wave. Actually, both are correct!

Dispersion of white light into colors.

Example 2: The diameter of the ball is 4 cm and it is located 20 cm from the point light source. If the screen is 80 cm from the source, what is the diameter of the shadow?

The ratio of shadow to the source is same as
that of ball
to source.
Therefore:

Shadows of Extended Objects

- The umbra is the region where no light reaches the screen.
- The penumbra is the outer area where only part of the light reaches the screen.

Example 3. What solid angle is subtended at the center of a sphere by an area of $1.6 \mathrm{~m}^{2}$? The radius of the sphere is 5 m .
 The
Steradian
Ω

$\Omega=\frac{1.60 \mathrm{~m}^{2}}{(5.00 \mathrm{~m})^{2}}$
$\Omega=0.00640 \mathrm{sr}$

The Lumen as a Unit of Flux

One lumen (Im) is the luminous flux emitted from a $1 / 60 \mathrm{~cm}^{2}$ opening in a standard source and

In practice, sources of light are usually rated by comparison to a commercially prepared standard light source.

A typical 100-W incandescent light bulb emits a total radiant power of about 1750 Im . This is for light emitted in all directions.

The Lumen in Power Units

Recalling that luminous flux is really radiant power allows us to define the lumen as follows:

One lumen is equal to $1 / 680 \mathrm{~W}$ of yellowgreen light of wavelength 555 nm .

A disadvantage of this approach is the need to refer to sensitivity curves to determine the flux for different colors of light.

Lupinous Intensity

The luminous intensity I for a light source is the luminous flux per unit solid angle.

Luminous intensity:

$$
I=\frac{F}{\Omega}
$$

Unit is the candela (cd)
A source having an intensity of one candela emits a flux of one lumen per steradian.

Illumination of a Surface

The illumination E of a surface A is defined as the luminous flux per unit area (F / A) in lumens per square meter which is renamed a lux (IX).

An illumination of one lux occurs when a flux of one lumen falls on an area of one square meter.
$E=\frac{F}{A}$ Unit: lux (lx)

Illumination Based on Intensity

The illumination E of a surface is directly proportional to the intensity I and inversely proportional to the square of the distance R.

$$
\begin{array}{ll}
E=\frac{F}{A} ; I=\frac{F}{\Omega} ; F=I \Omega & \Omega=\frac{A}{A} \\
E=\frac{I \Omega}{A} \text { but } \Omega=\frac{A}{R^{2}} \text { so that } & \text { Area } A
\end{array}
$$

Illumination, $E=\frac{I}{R^{2}}$
This equation applies for perpendicular surfaces.
from a tabletop of area $1.2 \mathrm{~m}^{2}$. What is the illumination and what flux F falls on the table?

$$
\begin{aligned}
& E=\frac{I}{R^{2}}=\frac{400 \mathrm{~cd}}{(2.40 \mathrm{~m})^{2}} \\
& \text { Illumination: } E=69.4 \mathrm{~lx}
\end{aligned}
$$

Now, recalling that $E=F / A$, we find F from:

$$
F=E A=(69.4 \mathrm{Ix})\left(1.20 \mathrm{~m}^{2}\right) \quad F=93.3 \mathrm{Im}
$$

Sunmary (Continued)

Luminous flux is the portion of total radiant power that is capable of affecting the sense of sight.

