\qquad

E-Fields PhET Lab, rvsd 2011

Introduction: It can by rationalized that the most important concept in physical science is like things \qquad while opposite things \qquad . When working with static electric charges, like charges \qquad while opposite charges \qquad These charges can be as large as clouds of ionized gas in a nebula one million times the size of the earth, or as small as protons and electrons. The rule remains the same. In this lab, you will investigate how a charge creates a field around itself and how test charges behave when placed in that field.

Charges and Fields

Important Formulas: $F=E q \quad F=k \frac{q_{1} q_{2}}{d^{2}} \quad E=V / d$ $\mathrm{k}=9.00 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$

Procedure Part I: Electricity, Magnets, and Circuits \rightarrow Charges and Fields Run Now!

- Place a 1 nC (nanoCoulomb) positive charge and E-Field sensor in the test area. Click \boldsymbol{V} Show E-field to observe the field lines in the E-field. Observe the sensor's arrow as you drag it around the in the field.
- The sensor's arrow illustrates the force of attraction or repulsion at a point in an electric field.
- Replace the positive charge with a negative point charge. To remove charges, drag them back into their box.

By convention, field arrows point \qquad a positive charge and \qquad a negative charge.

As the sensor gets closer to a point charge, the field strength created by that field \qquad

- Click on show numbers and tape measure to measure the distances from a a field-creating charge to a test charge. The tape measure can be dragged to a specific distance and placed anywhere on the field.
- When measuring field strength, click plot to show lines of equipotential.
- Complete the table below using a single positive or negative charge:

\checkmark Show numbers
 \checkmark tape measure

Test charge distance, m	Field strength, V/m	Potential at location, V
1.0 m		
2.5 m		
	$1.1 \mathrm{~V} / \mathrm{m}$	
4.0 m		

- Add at least three charges, using both positive and negative charges. Move the voltage meter around and plot the lines of equipotential. Plot at least ten lines.
- Sketch the multi-charge system here:
- Show the value of the potential on each line of equipotential.

Procedure Part II: Electricity, Magnets, and Circuits \rightarrow Electric Field Hockey Run Now!

- So, using that wonderful principle that opposite charges \qquad while like charges \qquad play a little Electric Field Hockey.
- Setup your charges and go for the goal.
- Turning on the Field and Trace may make things a little easier.
- Reset the simulation to try again, with your charges in place.
- Challenge the other members of your lab group to duels.
- Challenge other lab groups. (no hockey fights please.)

- Try to use less than 12 charges total. (how few can you use?)

Conclusion Questions and Calculations:

1. Closer to a point charge, the electrostatic field created is stronger/weaker.
2. Placed exactly between two oppositely charged point charges, a test charge (the sensor) will show zero / minimum / maximum force (N) or field strength (N/C).
3. Placed exactly on a point charge, the sensor will show zero / minimum / maximum field strength.
4. The point charges used in the simulation are $\pm 1.0 \times 10^{-9} \mathrm{C}$ (nanoCoulomb). If two such positive charges are placed 2.0 m away from each other, the force between them would be... (use formula)

SHOW WORK HERE:
5. What is the magnitude of the electric field produced 2.0 m away from one of the charges?

WORK HERE:
6. A test charge of 4.5 C in a field of strength $2.2 \mathrm{~N} / \mathrm{C}$ would feel what force? WORK:
7. What is the value of the electric field when a -9.6 V potential is found 1.4 m from its center? \qquad WORK:
8. What is the electrostatic potential found .68 m from the center of a $2.3 \mathrm{~V} / \mathrm{m}$ field?

WORK:
9. A balloon is electrostatically charged with $3.4 \mu \mathrm{C}$ (microcoulombs) of charge. A second balloon 23 cm away is charged with $-5.1 \mu \mathrm{C}$ of charge. The force of attraction / repulsion between the two charges will be: WORK:
10. If one of the balloons has a mass of 0.084 kg , with what acceleration does it move toward or away from the other balloon?

WORK:

