Notebooks: Open to page 20 for some note taking!

Leaving a stop light, a truck undergoes an acceleration of $3.45 \mathrm{~m} / \mathrm{s}^{2}$ for 12.0 s . It then travels at a constant speed. What was its final speed and how many kilometers has it traveled after 45.0 s?

Solving Physics Motion Problems- 2 Ways

1. Read the entire problem.

Leaving a stop light, a truck undergoes an acceleration of $3.45 \mathrm{~m} / \mathbf{s}^{2}$ for 12.0 s . It then travels at a constant speed. What was its final speed and how many kilometers has it traveled after 45.0 s?

Solving Physics Motion Problems- 2 Ways

1. Read the entire problem.
2. Identify key terms that relate to motion

- "At rest", "slowed down", "how long" etc.
- Convert to "motion language"-> "at rest means initial velocity is zero"

Leaving a stop light, a truck undergoes an acceleration of $3.45 \mathrm{~m} / \mathrm{s}^{2}$ for 12.0 s . It then travels at a constant speed. What was its final speed and how many kilometers has it traveled after 45.0 s?

Solving Physics Motion Problems- 2 Ways

1. Read the entire problem.
2. Identify key terms that relate to motion

- "At rest", "slowed down", "how long" etc.
- Convert to "motion language"-> "at rest means initial velocity is zero"

3. Draw a diagram

Solving Physics Motion Problems- 2 Ways

1. Read the entire problem.
2. Identify key terms that relate to motion

- "At rest", "slowed down", "how long" etc.
- Convert to "motion language"-> "at rest means initial velocity is zero"

3. Draw a diagram
4. List know initial conditions (when $\mathrm{t}=0$ seconds)

Solving Physics Motion Problems- 2 Ways

1. Read the entire problem.
2. Identify key terms that relate to motion

- "At rest", "slowed down", "how long" etc.
- Convert to "motion language"-> "at rest means initial velocity is zero"

3. Draw a diagram
4. List know initial conditions (when $\mathrm{t}=0$ seconds)
5. List known final conditions

$$
t=\mathbf{s}
$$

Solving Physics Motion Problems- 2 Ways

1. Read the entire problem.
2. Identify key terms that relate to motion

- "At rest", "slowed down", "how long" etc.
- Convert to "motion language"-> "at rest means initial velocity is zero"

3. Draw a diagram
4. List know initial conditions (when $\mathrm{t}=0$ seconds)
5. List known final conditions
6. Identify all unknowns

Solving Physics Motion Problems- 2 Ways

1. Read the entire problem.
2. Identify key terms that relate to motion

- "At rest", "slowed down", "how long" etc.
- Convert to "motion language"-> "at rest means initial velocity is zero"

3. Draw a diagram
4. List know initial conditions (when $\mathrm{t}=0$ seconds)
5. List known final conditions
6. Identify all unknowns
7. Write out your 2 kinematic equations for position (x) and velocity (v) and draw your P,V, A diagrams

Solving Physics Motion Problems- 2 Ways

Write out your 2 kinematic equations for position (x) and velocity (y) and draw your P,V, A diagrams:

$$
X=X_{0}+V_{0} t+1 / 2 a t^{2}
$$

$$
V=V_{0}+a t
$$

