Name Period Period

Physics: Rotational Motion Part 1 – Small Circles

v14

Track your learning for each target, write the resources that will help you learn. Add notes and useful tidbits too!

		Learning Targets I can		Tracking my progress				Resources			
#	Standards			ciue	Kind of know it	I think I get	I can teach this	Notebook	pages	Textbook Sections	Other
1		Define Rotational motion in terms of the fundamental unit (rotational angle about a fixed point measured in radians)									
2		Translate an angular velocity into a tangential velocity for a known circular object of radius r									
3	4.D.1	Assign positive or negative vector direction values for all rotational variables (+ counter clockwise) and (- clockwise)									
4		Explain how Newton's 1 st law describes <u>constant</u> angular velocity when net torque = 0									
5	5.E.2	Describe moment of inertia as a resistance to change in rotation									
6		Explain how the distribution of mass in an object effects its angular acceleration and is quantified as the moment of inertia									
7		Describe how to make an object move in a circle									
8		Construct force diagrams that display the forces acting on an object undergoing uniform circular motion									
9		Acknowledge the relationship between force and mass for an object traveling in a circle									
10		Quantify the relationship between F, m, v, and r in circular motion									
11		Solve for the missing quantity given three of the four variables above									
12	5E2	Define the orbit of a planet as elliptical with the sun at one focal point									
13		Describe the speed of a planet as faster when it is closer to the sun (sweeping out equal areas in equal time)									
14	2B1 3C1	Describe the force of gravity between two objects is proportional to the product of their masses									
15	2B1	Describe the gravitational field as proportional to the mass of the object (planet)									
16	2B2	Describe the force of gravity between two objects is inversely proportional to the square of the distance between them									
17	2B2	Describe a gravitational field as proportional to the mass of the object and inversely proportional to the distance away from the object (g=GM/r²)									

Stu	ident	Self Assessment	Name						_ Perio	d
Phy	Physics: Rotational Motion Part 1 – Small Circles v1.									
Track your learning for each target, write the resources that will help you learn. Add notes and useful tidbits too!										
18	1/8/	Approximate a numerical vafield (g) given mass and radi	C							

Potential activities for model development:

radius

19

1-8 Roll a circle to develop radian measurements (is there a relationship between degrees of rotation and distance traveled?)

Robots for angular velocity vs linear velocity (useful!)

Bonus – relate the period of revolution to the orbital

- 9-12 Rolling the disks with distributable masses
- 13-14 Use pulleys with unbalanced masses (link rotational acceleration with linear acceleration) Superpulleys on tracks with photogates, or a bike tire with adjustable masses to show how the rotational acceleration depends on the applied torque AND the mass/distribution) and perhaps a rear bike wheel cluster
- 15-16 Spinning wheels running into each other?
- 19 Sitting and spinning with arms out versus crossed on platforms or using some other mechanism for changing the mass distribution.