Table of Information and Equation Tables for AP Physics 1 and 2 Exams
The accompanying Table of Information and equation tables will be provided to students when they take the AP Physics 1 and 2 Exams. Therefore, students may NOT bring their own copies of these tables to the exam room, although they may use them throughout the year in their classes in order to become familiar with their content. The headings list the effective date of the tables. That date will only be changed when there is a revision to any of the tables. Check the Physics course home pages on AP Central for the latest versions of these tables (apcentral.collegeboard.org).

The Table of Information and the equation tables are printed near the front cover of the both the multiple-choice section and the free-response section. The Table of Information is identical for both exams except for some of the conventions.

The equations in the tables express the relationships that are encountered most frequently in the AP Physics 1 and 2 courses and exams. However, the tables do not include all equations that might possibly be used. For example, they do not include many equations that can be derived by combining other equations in the tables. Nor do they include equations that are simply special cases of any that are in the tables. Students are responsible for understanding the physical principles that underlie each equation and for knowing the conditions for which each equation is applicable.

The equation tables are grouped in sections according to the major content category in which they appear. Within each section, the symbols used for the variables in that section are defined. However, in some cases the same symbol is used to represent different quantities in different tables. It should be noted that there is no uniform convention among textbooks for the symbols used in writing equations. The equation tables follow many common conventions, but in some cases consistency was sacrificed for the sake of clarity.

Some explanations about notation used in the equation tables:

1. The symbols used for physical constants are the same as those in the Table of Information and are defined in the Table of Information rather than in the right-hand columns of the equation tables.
2. Symbols with arrows above them represent vector quantities.
3. Subscripts on symbols in the equations are used to represent special cases of the variables defined in the right-hand columns.
4. The symbol Δ before a variable in an equation specifically indicates a change in the variable (e.g., final value minus initial value).
5. Several different symbols (e.g., d, r, s, h, ℓ) are used for linear dimensions such as length. The particular symbol used in an equation is one that is commonly used for that equation in textbooks.

ADVANCED PLACEMENT PHYSICS 1 TABLE OF INFORMATION, EFFECTIVE 2015

CONSTANTS AND CONVERSION FACTORS			
Proton mass, $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$	Electron charge magnitude,	$e=1.60 \times 10^{-19} \mathrm{C}$	
Neutron mass, $m_{n}=1.67 \times 10^{-27} \mathrm{~kg}$	Coulomb's law constant,	$k=1 / 4 \pi \varepsilon_{0}=9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$	
Electron mass, $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$	Universal gravitationalconstant,	$G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$	
Speed of light,	$c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	Acceleration due to gravity	
at Earth's surface,	$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$		

UNIT	meter,	m	kelvin,	K	watt,	W	degree Celsius,	${ }^{\circ} \mathrm{C}$
	kilogram,	kg	hertz,	Hz	coulomb,	C		
	second,	s	newton,	N	volt,	V		
	ampere,	A	joule,	J	ohm,	Ω		

PREFIXES		
Factor	Prefix	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES								
θ	0°	30°	37°	45°	53°	60°	90°	
$\sin \theta$	0	$1 / 2$	$3 / 5$	$\sqrt{2} / 2$	$4 / 5$	$\sqrt{3} / 2$	1	
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$\sqrt{2} / 2$	$3 / 5$	$1 / 2$	0	
$\tan \theta$	0	$\sqrt{3} / 3$	$3 / 4$	1	$4 / 3$	$\sqrt{3}$	∞	

The following conventions are used in this exam.
I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
II. Assume air resistance is negligible unless otherwise stated.
III. In all situations, positive work is defined as work done on a system.
IV. The direction of current is conventional current: the direction in which positive charge would drift.
V. Assume all batteries are ideal unless otherwise stated.

CONSTANTS AND CONVERSION FACTORS

CONSTANTS AND CONVERSION FACTORS	
Proton mass, $m_{p}=1.67 \times 10^{-27} \mathrm{~kg}$ Neutron mass, $m_{n}=1.67 \times 10^{-27} \mathrm{~kg}$ Electron mass, $m_{e}=9.11 \times 10^{-31} \mathrm{~kg}$ Avogadro's number, $N_{0}=6.02 \times 10^{23} \mathrm{~mol}^{-1}$ Universal gas constant, $\quad R=8.31 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{K})$ Boltzmann's constant, $k_{B}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$	Electron charge magnitude, $\quad e=1.60 \times 10^{-19} \mathrm{C}$ 1 electron-volt, $1 \mathrm{eV}=1.60 \times 10^{-19} \mathrm{~J}$ Speed of light, $\quad c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$ $\begin{array}{r}\text { Universal gravitational } \\ \text { constant, }\end{array} \quad G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$ Acceleration due to gravity at Earth's surface, $\quad g=9.8 \mathrm{~m} / \mathrm{s}^{2}$
1 unified atomic mass unit, Planck's constant, Vacuum permittivity, Coulomb's law constant, Vacuum permeability, Magnetic constant, 1 atmosphere pressure,	$\begin{aligned} 1 \mathrm{u} & =1.66 \times 10^{-27} \mathrm{~kg}=931 \mathrm{MeV} / \mathrm{c}^{2} \\ h & =6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}=4.14 \times 10^{-15} \mathrm{eV} \cdot \mathrm{~s} \\ h c & =1.99 \times 10^{-25} \mathrm{~J} \cdot \mathrm{~m}=1.24 \times 10^{3} \mathrm{eV} \cdot \mathrm{~nm} \\ \varepsilon_{0} & =8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{~m}^{2} \\ k=1 / 4 \pi \varepsilon_{0} & =9.0 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} \\ \mu_{0} & =4 \pi \times 10^{-7}(\mathrm{~T} \cdot \mathrm{~m}) / \mathrm{A} \\ k^{\prime}=\mu_{0} / 4 \pi & =1 \times 10^{-7}(\mathrm{~T} \cdot \mathrm{~m}) / \mathrm{A} \\ 1 \mathrm{~atm} & =1.0 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}=1.0 \times 10^{5} \mathrm{~Pa} \end{aligned}$

UNIT SYMBOLS	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
	second,	s	newton,	N	volt,	V	degree Celsius,	${ }^{\circ} \mathrm{C}$
	ampere,	A	pascal,	Pa	ohm,	Ω	electron-volt,	eV
	kelvin,	K	joule,	J	henry,	H		

PREFIXES		
Factor	Prefix	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES								
θ	0°	30°	37°	45°	53°	60°	90°	
$\sin \theta$	0	$1 / 2$	$3 / 5$	$\sqrt{2} / 2$	$4 / 5$	$\sqrt{3} / 2$	1	
$\cos \theta$	1	$\sqrt{3} / 2$	$4 / 5$	$\sqrt{2} / 2$	$3 / 5$	$1 / 2$	0	
$\tan \theta$	0	$\sqrt{3} / 3$	$3 / 4$	1	$4 / 3$	$\sqrt{3}$	∞	

The following conventions are used in this exam.
I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
II. In all situations, positive work is defined as work done on a system.
III. The direction of current is conventional current: the direction in which positive charge would drift.
IV. Assume all batteries are ideal unless otherwise stated.
V. Assume edge effects for the electric field of a parallel plate capacitor unless otherwise stated.
VI. For any isolated electrically charged object, the electric potential is defined as zero at infinite distance from the charged object.

MECHANICS

$\omega=\omega_{0}+\alpha t$
$x=A \cos (\omega t)=A \cos (2 \pi f t)$
$U_{s}=\frac{1}{2} k x^{2}$
$\Delta U_{g}=m g \Delta y$
$x_{c m}=\frac{\sum m_{i} x_{i}}{\sum m_{i}}$
$\vec{\alpha}=\frac{\sum \vec{\tau}}{I}=\frac{\vec{\tau}_{n e t}}{I}$
$\tau=r_{\perp} F=r F \sin \theta$
$L=I \omega$
$\Delta L=\tau \Delta t$
$K=\frac{1}{2} I \omega^{2}$
$\left|\vec{F}_{s}\right|=k|\vec{x}|$

ELECTRICITY AND MAGNETISM

$$
\begin{aligned}
& \left|\vec{F}_{E}\right|=\frac{1}{4 \pi \varepsilon_{0}}\left|\frac{q_{1} q_{2}}{r^{2}}\right| \\
& \stackrel{\rightharpoonup}{E}=\frac{\stackrel{\rightharpoonup}{F}_{E}}{q} \\
& |\vec{E}|=\frac{1}{4 \pi \varepsilon_{0}} \frac{|q|}{r^{2}} \\
& \Delta U_{E}=q \Delta V \\
& V=1 \underline{q} \quad P=\text { power } \\
& Q=\text { charge } \\
& q=\text { point charge } \\
& |\vec{E}|=\left|\frac{\Delta V}{\Delta}\right| \quad R=\text { resistance } \\
& r=\text { separation } \\
& \Delta V=Q \quad t=\text { time } \\
& U=\text { potential (stored) } \\
& \text { energy } \\
& C=\kappa \varepsilon_{0} \frac{A}{d} \\
& U_{C}=\frac{1}{2} Q \Delta V=\frac{1}{2} C(\Delta V)^{2} \\
& I=\frac{\Delta Q}{\Delta t} \\
& R=\frac{\rho \ell}{A} \\
& B=\frac{\mu_{0}}{2 \pi} \frac{I}{r} \\
& P=I \Delta V \\
& \Phi_{B}=\vec{B} \cdot \vec{A} \\
& I=\frac{\Delta V}{R} \\
& R_{s}=\sum_{i} R_{i} \\
& \frac{1}{R_{p}}=\sum_{i} \frac{1}{R_{i}} \\
& C_{p}=\sum_{i} C_{i} \\
& \frac{1}{C_{s}}=\sum_{i} \frac{1}{C_{i}} \\
& \vec{F}_{B}=q \vec{v} \times \vec{B} \\
& \left|\vec{F}_{B}\right|=|q \vec{v}||\sin \theta||\vec{B}| \\
& \vec{F}_{B}=\vec{I} \times \vec{B} \\
& \left|\vec{F}_{B}\right|=|\vec{I}||\sin \theta||\vec{B}|
\end{aligned}
$$

