Name:

PhET Vectors Simulations Lab

Introduction:

A vector quantity is one that has both a magnitude and a direction. For instance, a velocity vector will have a magnitude $(24 \mathrm{~m} / \mathrm{s})$ and a direction (northeast or 45 degrees). These simulations will demonstrate how vectors can be summed to produce a resulting vector, and how the acceleration vector affects the velocity vector.

Part I: Vector Simulation: Motion \rightarrow Motion in $2 D$ Run Now!

1. Click Stop. Drag the object around with your mouse and notice the actions of the two vectors. Spend some time investigating the vectors. Which vector is velocity and which is acceleration? \qquad
2. Be sure everyone in the lab group does this exercise.
3. Click on Linear Acc 1. Observe the motion. A larger blue vector causes what motion?
4. Click Simple Harmonic. Observe the motion. A larger blue vector causes what motion?
5. Click Circular. Observe the motion. What orientation must the vectors (to each other) have to turn the object?
6. Click Stop. Attempt to move the object like a car or runner on a racetrack (in an oval). What must the car/runner do in order to turn? \qquad
7. Move the object like a car moving forward, then coming to a quick stop. Describe the acceleration vector. \qquad

Part II: Vector Addition Simulation: Math Tools \rightarrow Vector Addition Run Now!

Place two vectors $=$ in the work area. Change their direction and magnitude be dragging the heads of the arrows representing each vector. Click siliow sum to view the resultant (sum) of the two vectors. You may click the Styles to show the X and Y components.

Click on one vector and fill in the boxes:

Click on another vector and fill in the boxes:

\square
\square

Click the resultant vector and fill in

$\mathrm{Ry}_{\mathrm{y}} \square$

The Resultant Vector

\square θ \square \mathbf{R}_{x} \square $\mathbf{R}_{\mathbf{y}} \square$

Part III: Calculating Resultant Vectors: review of vector addition follows \quad ***GRADED***

- Find the mathematical sum of each set of vectors below (with a calculator).
- Recreate (as closely as possible) the vectors in the simulation to check your work.
- To add vectors, break each vector into its X an Y components by calculating $M \cos \theta=X$ and $M \sin \theta=Y$. The components CAN BE NEGATIVE ($\downarrow=-\mathrm{x},-\mathrm{y}$)
- The resultant vector's X and Y components are the sum of the X and Y 's of each vectors: $X_{r}=X_{1}+X_{2}$
- The resultant vector's magnitude M or IR I is found using the Pythagorean theorem using X_{r} and Y_{r} as the legs of a right triangle, where the hypotenuse is the magnitude.
- The angle θ of the resultant vector is found with the inverse tangent $\left(\tan ^{-1}\right)$ of the X_{r} and Y_{r} components.

Fill In All Available Boxes-Graded answers will come from calculations, use sim to check work
\#1
Vector 1

M	angle, θ	X_{1}	Y_{1}
6.0	35		
Vector 2			
M	angle, θ	X_{2}	Y_{2}
2.5	20.		
Resultant			
M_{r} θ_{r} X_{r} Y_{r}			

\#2

Vector 1

M	angle, θ	X_{1}	Y_{1}
1.8	15.		

Vector 2

M	angle, θ	X_{2}	Y_{2}
7.0	-25		

Resultant

M_{r}	θ_{r}	X_{r}	Y_{r}

Conclusion Questions:

1. The blue vector represented \qquad and the green represented \qquad —.
2. When the acceleration vector was in the same direction as the velocity vector, the object slowed down / sped up.
3. When the acceleration vector was in the opposite direction as the velocity vector, the object slowed/sped up.
4. Turning requires the acceleration vector to be \qquad p \qquad (geometry term) to the velocity vector.
5. When a car comes to a stop, the car's brakes create an \qquad a \qquad that is in the same direction / opposite direction as the velocity vector.
