\qquad

1. A car with a velocity of $22 \mathrm{~m} / \mathrm{s}$ is accelerated uniformly at the rate of 1.6 $\mathrm{m} / \mathrm{s}^{2}$ for 6.8 s . What is its final velocity?
2. Light travels in a straight line at a constant speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ for 4.1 years to reach the earth from the nearest star $3.9 \times 10^{13} \mathrm{~km}$ away. What is its acceleration?
3. A boy sliding down a hill accelerates at $1.40 \mathrm{~m} / \mathrm{s}^{2}$. If he started from rest, in what distance would he reach a velocity of $7.00 \mathrm{~m} / \mathrm{s}$?
4. What is the acceleration of a plane that changes velocity from $75 \mathrm{~m} / \mathrm{s}$ to $140 \mathrm{~m} / \mathrm{s}$ in 15 s ? How far does a plane fly during that time?
5. If a bullet leaves the muzzle of a rifle with a speed of $600 \mathrm{~m} / \mathrm{s}$, and the barrel of the rifle is 0.9 m long, at what rate is the bullet accelerated while in the barrel?
6. A car is traveling at a velocity of $22 \mathrm{~m} / \mathrm{s}$ when the driver puts on the brakes to decelerate it at $1.4 \mathrm{~m} / \mathrm{s}^{2}$ over a distance of 110 m . What is the car's velocity at the end of this distance?
7. A ball, originally at rest, undergoes a constant acceleration of $0.76 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take the ball to travel 4.8 m ?
8. You are driving your car down a straight road at a constant speed of $23 \mathrm{~m} / \mathrm{s}$ (about $50 \mathrm{mi} / \mathrm{h}$). What is your acceleration?
a. Suddenly you see a stalled school bus across the road ahead. It takes you 0.75 s to react and put on the brakes. How far does the car move during this time?
b. When you apply the brakes, the car decelerates at $6.2 \mathrm{~m} / \mathrm{s}^{2}$. How far does the car travel until it comes to a stop?
c. If the bus is 62 m away, will you be able to stop before hitting it?
