
Falling Objects

Instructions:

- Use kinematic equations to complete the table.
- Show all your calculations
- Answer questions on the back

	y@1 sec	V@1 sec	y@2 sec	V@2 sec	y@3 sec	V@ 3 sec	y@ 4 sec	V@4 sec	Time to bottom	V @ bottom
Scenerio I										
Scenerio II										
Scenerio III										

<u>Scenerio I</u>: Ball is "dropped" $V_0 = 0$ m/s

<u>Scenerio II</u>: $V_0 = -20 \text{ m/s}$

<u>Scenerio III</u>: $V_0 = +20 \text{ m/s}$

 $Y = Y_0 + V_0 + (-5)t^2$

- V= V₀ + (-10)t
 - 1. Where is Y_0 ?
 - 2. What is Y_0 ?
 - 3. What is Y at the bottom? (Careful!!!)

Analysis Questions

- 1. At t=1s, what is the direction of each ball?
- 2. At t=2 s, what is the direction of each ball?
- 3. At t=3 s, what is the direction of each ball?
- 4. Look at the velocities for all the times, what pattern can you see, or is there any pattern to how the velocities change?
- 5. Which ball hits the bottom with the greatest velocity?
- 6. Explain why this happens.