Falling Objects

Instructions:

- Use kinematic equations to complete the table.
- Show all your calculations
- Answer questions on the back

	$\begin{gathered} \hline \text { y@1 } \\ \text { sec } \end{gathered}$	$\begin{gathered} \hline \text { V@1 } \\ \text { sec } \end{gathered}$	$\begin{gathered} \hline \text { y@2 } \\ \text { sec } \end{gathered}$	$\begin{gathered} \hline \text { V@2 } \\ \text { sec } \end{gathered}$	$\begin{gathered} \hline \text { y@3 } \\ \text { sec } \end{gathered}$	$\begin{gathered} \hline \text { V@ } 3 \\ \text { sec } \end{gathered}$
Scenerio I						
$\begin{gathered} \text { Scenerio } \\ \text { II } \\ \hline \end{gathered}$						
Scenerio III						

Scenerio I: Ball is "dropped" $\mathrm{V}_{0}=0$ m / s

Scenerio II: $\mathrm{V}_{0}=-20 \mathrm{~m} / \mathrm{s}$
Scenerio III: $\mathrm{V}_{0}=+20 \mathrm{~m} / \mathrm{s}$
$Y=Y_{0}+V_{0}+(-5) t^{2}$
$\mathrm{V}=\mathrm{V}_{\mathrm{o}}+(-10) \mathrm{t}$

1. Where is Y_{0} ?
2. What is Y_{0} ?
3. What is Y at the bottom?
(Careful!!!)

Analysis Questions

1. At $t=1 \mathrm{~s}$, what is the direction of each ball?
2. At $t=2 \mathrm{~s}$, what is the direction of each ball?
3. At $t=3 \mathrm{~s}$, what is the direction of each ball?
4. Look at the velocities for all the times, what pattern can you see, or is there any pattern to how the velocities change?
5. Which ball hits the bottom with the greatest velocity?
6. Explain why this happens.
